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Chapter 1

Introduction

Checking mathematical proofs is potentially
one of the most interesting and useful
applications of automatic computers.

John McCarthy [McC62]

Very few mathematical statements can be judged to be true or false solely by means
of direct observation. Some statements, the axioms, have to be accepted as true without
too much further argument. Other statements, the theorems, are believed because they are
seen as logical consequences of the axioms by means of a proof. Proofs constitute the only
effective mechanism for revealing truth in mathematics. We would naturally hope that all
provable statements are indeed true. Most of us would also optimistically believe that any
true statement has a proof, but such is not the case. Gddel showed that for any reasonably
powerful formal system of axioms and inference rules, there are statements that can neither
be proved nor disproved on the basis of the axioms and inference rules, and are therefore
undecidable. Godel also showed that for such formal systems, there could be no absolute
proof that all provable statements were in fact true. In his proof, Gédel described a machine
that could check if a given construction constituted a valid proof. It was hoped that one
could similarly define a machine to discover the proof itself, but Church and Turing showed
that such a machine could not exist. We show in this book that a machine, the Boyer—
Moore theorem prover, can be used to check Gédel’s proof of the existence of undecidable
sentences. Our mechanical verification of G6del’s proof can be seen as an instance of a
machine establishing the limitation of mechanism itself, thus showing in concrete terms that
machines are not, in this sense, limited.

The notion of a proof as a logical deduction of a theorem from the azioms was first popu-
larized by Euclid in his Elements [Euch6]. For a long time thereafter, there was no rigorous
definition of what constituted a valid logical deduction. In the seventeenth century, Leibniz
advanced the notion of a universal symbolic logic that he hoped would be applied to mathe-
matical and scientific reasoning, and also to philosophy, law, and politics.! In the middle of

Leibniz’s actual words are memorable [Lei65]:

What must be achieved is in fact this: that every paralogism be recognized as an error of
calculation, and every sophism when expressed in this new kind of notation, appear as a solecism
or barbarism, to be corrected easily by the laws of this philosophical grammar.

Once this is done, then when a controversy arises, disputation will no more be needed between
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the nineteenth century, Boole, together with de Morgan, laid out the algebraic laws obeyed
by truth-valued propositions and the propositional connectives [Boo54]. In the second half
of the nineteenth century, Dedekind developed an axiomatic system for proving properties of
numbers, and Cantor developed set theory as a framework for all of mathematics. The first
rigorous definition of a valid logical proof was given by Frege in his Begriffsschrift [Fre67],
where he gave syntactic rules for distinguishing the valid proofs from the invalid ones.?
He devised a symbolic language, the predicate calculus, in which mathematical statements
could be unambiguously expressed in terms of variables, functions, predicates, propositional
connectives, and universal and existential quantification. In formulations of the predicate
calculus, some statements, such as “A implies A,” are taken to be axioms. Theorems are
derived starting from the axioms by repeated application of the rules of inference which
prescribe how proofs are to be constructed. The well-known rule of modus ponens allows the
derivation of a proof of B from proofs of A and A implies B. The derivation of a theorem
starting from the axioms and using the rules of inference is termed a formal proof since it is
defined solely in terms of the form or the syntax of the statements involved. The language,
axioms, and rules constitute a formal theory. Examples of concepts formalized by formal
theories include geometry, numbers, and sets.

Once the notion of a proof has been made formal, two important consequences follow.
First, a computer can be programmed as an automated proof checker to check whether a
purported formal proof is correct according to the axioms and inference rules. Second, these
formal proofs can themselves be made the objects of mathematical study. This study was
given the name metamathematics by David Hilbert. Theorems in metamathematics typi-
cally analyze the properties of formal theories, their inter-relationships, and the relationship
between the form and the provability of statements within specific theories. For example, the
tautology theorem asserts that all tautologously true statements of predicate calculus can
be formally proved. Similarly, G&del’s first incompleteness theorem asserts of a theory such
as formal number theory that it is either inconsistent or contains an undecidable sentence
that can neither be proved nor disproved.

This book is about the interplay between automated proof checking and metamathemat-
ics. We describe a project aimed at constructing and mechanically verifying several sub-
stantial proofs in metamathematics using an automated proof checker known as the Boyer—
Moore theorem prover.® The proofs thus formally verified include some of the landmarks

two philosophers than between two computers. It will suffice that, pen in hand, they sit down to
their abacus and (calling in a friend, if they so wish) say to each other: let us calculate.

2To quote from van Heijenoort’s prefatory remarks in From Frege to Gédel [vVH67]:

This is the first work that Frege wrote in the field of logic, and, although a mere booklet of eighty-
eight pages, it is perhaps the most important single work ever written in logic. Its fundamental
contributions, among lesser points, are the truth-functional propositional calculus, the analysis
of the proposition into function and argument(s) instead of subject and predicate, the theory of
quantification, a system of logic in which derivations are carried out exclusively according to the
form of the expressions, and a logical definition of the notion of a mathematical sequence. Any
one of these achievements would suffice to secure the book a permanent place in the logician’s
library.

31t could be argued that the mechanically verified proofs described here are not conventional formal proofs



Background 3

of metamathematics: the tautology theorem, Gédel’s first incompleteness theorem, and the
Church-Rosser theorem of the lambda calculus. We thus demonstrate that the technology of
automated proof checking is sufficiently well-developed that it is possible to verify substan-
tial proofs in metamathematics. If complex and substantial mathematical arguments can be
mechanically verified, then it is conceivable that automated proof checking technology will
eventually be used as a reasoning aid and even employed as part of the refereeing process
for journal publications. The technology is not yet ripe enough for such a task but there
are no obvious insurmountable obstacles. Mechanically verified proofs in metamathematics
themselves have significant relevance for automated proof checking. Theorems in metamath-
ematics make it possible to obtain more sophisticated but sound inference procedures from
simpler ones. The ability to add such inference rules is essential if high-level mathematical
arguments are to be verified with a reasonable amount of effort.*

The remainder of this introduction presents the background material in metamathematics
and automated reasoning and provides an overview of the chapters to follow. We also give
a brief introduction to the Boyer-Moore theorem prover and its logic.

1.1 Background

The relevant literature on logic, metamathematics, and automated reasoning is obviously
voluminous and only a few significant sources are enumerated here. One of the more read-
able outlines of Gédel’s incompleteness theorem is Godel’s original paper [G&d67b] entitled
“On formally undecidable propositions in Principia mathematica and related systems I1.”5
This paper has been widely reprinted and an English translation [G6d92] has recently been
published by Dover Publications as a book in 1992. Two good sources for Gédel’s paper and
related material are:

e The Undecidable, edited by Davis [Dav65], and

e From Frege to Gdidel: A Sourcebook in Mathematical Logic, 1879-1931, edited by
van Heijenoort [vH67].

Godel’s paper also appears in Kurt Godel: Complete Works Volume I edited by Feferman
et al. [FJWDK™86]. Topics related to the incompleteness theorem are discussed by Smoryn-
ski [Smo78] and by Smullyan [Smu92] who has also given entertaining explanations of Godel’s
theorems in several popular hooks.

Kleene’s Introduction to Metamathematics [Kleb2], Shoenfield’s Mathematical Logic
[Sho67], and Cohen’s Set Theory and the Continuum Hypothesis [Coh66), provided some of
the primary source material for the present project.

in any well-known formal proof system since the Boyer-Moore theorem prover employs a number of complex
decision procedures and heuristics. However, these proofs are, both in principle and in practice, formalizable.
1Frege foresaw this possibility when he wrote [Fre67):

...when the foundations for such an ideography are laid, the primitive components must be
taken as simple as possible, if perspicuity and order are to be created. This does not preclude the
possibility that later certain transitions from several judgments to a new one, transitions that
this one mode of inference would not aliow us to carry out except mediately, will be abbreviated
in immediate ones. In fact this would be advisable in case of eventual application.

5Since Godel’s results were quickly accepted, the planned second part of the paper was never written.
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The main references on the Boyer-Moore theorem prover are the books A Computational
Logic [BM79] and A Computational Logic Handbook [BMS88], by Boyer and Moore. The
book Symbolic Logic and Mechanical Theorem Proving by Chang and Lee [CL73] is a good
reference for material on resolution theorem proving.

Other general texts on mathematical logic include A Mathematical Introduction to Logic
by Enderton [End72], and Computability and Logic by Boolos and Jeffrey [BJ89)].

Books on the lambda calculus include Church’s The Calculi of Lambda-Conversion
[Chu4l], Barendregt’s The Lambda Calculus [Bar78a), and Introduction to Combinators
and A-Calculus by Hindley and Seldin [HS86].

The rest of this section informally presents the relevant background on language, logic,
metamathematics, and automated reasoning.

1.1.1 The Paradoxes

Dedekind, Cantor, Peano, and Frege were seeking a uniform foundational framework for
mathematics in terms of a language and a deductive system. The difficulty of this task can
be illustrated by means of several well-known paradoxes. Many of these exploit the confusion
between language, metalanguage, and semantics. The Liar paradox [Mar84] has a Cretan
asserting, “Cretans always lie.” If indeed Cretans always lie, then the above statement is
true. Then, however, since this statement is true and spoken by a Cretan, it cannot be the
case that Cretans always lie. So if the sentence is true, then it is also false. On the other
hand, if there is exactly one Cretan whose only utterance is the above statement, then if
this statement is false, it is also true. The Liar paradox is a semantical paradox since it
employs notions of meaning, truth, and falsity in its statement. The paradox suggests that
these notions are not accurately definable for a language within the language itself [Tar83].

Berry’s paradox defines a number as “the least natural number not describable in fewer
than ninety letters from the English alphabet.” Since there are only finitely many numbers
describable in fewer than ninety letters from the English alphabet, a least such number must
exist. However, if such a number does exist, then we have in fact succeeded in describing it
in fewer than ninety letters by the phrase in quotes. Berry’s paradox is another semantical
paradox.

Russell’s paradox evokes the idea of a library catalog that lists all those library catalogs
that do not list themselves. If this catalog does not list itself, then it would be incomplete
and hence would not have listed all of those catalogs that do not list themselves. On the
other hand, if it does list itself, then it is erroneous since it has then listed a catalog that
lists itself. Russell’s paradox can actually be put into a mathematical form. It does not
employ any obviously semantical notions, and it yields a contradiction in Frege’s theory of
arithmetic [GB80, Rus67].

Thus, paradoxes do appear in seemingly natural formalizations of mathematical reason-
ing and they lead, as shown above, to contradictions. The challenge for a foundation of
mathematics is to formalize all of mathematics while avoiding the contradictions result-
ing from such paradoxes. The constructions of undecidable sentences in proofs of Gdodel’s
incompleteness theorem are also inspired by the paradoxes.
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1.1.2 Foundations of Mathematics

If mathematics relies on logical deduction rather than direct observation as a means of
grasping the truth, then, as the above paradoxes demonstrate, it is crucial to identify the
principles of correct mathematical reasoning. Euclid [Euc56] identified such a collection of
“self-evident” postulates for proving theorems in plane geometry, but used informal mathe-
matical reasoning to construct proofs. The discovery of non-Euclidean geometry in the early
nineteenth century cast doubt on the self-evidence of Euclid’s postulates. This discovery and
the general increase in mathematical rigor led several mathematicians to carefully identify
certain correct reasoning principles and to ensure that these were in some sense minimal.
The hope was that such a systematization of mathematical reasoning would also make it
possible to find the errors in a mathematical proof in a systematic manner. Dedekind [Ded63]
carried out such a development for number theory where he carefully developed axioms for
the natural numbers and reduced the theory of rational and real numbers to a combination
of set theory and number theory. Peano [Pea67] gave number-theoretic axioms similar to
those of Dedekind and employed an elegant logical notation that has since become standard
in mathematics. Cantor [Can55] went even further and reduced a great deal of mathematics
to a set theory that contained transfinite ordinal and cardinal numbers.

Logicism. Towards the end of the nineteenth century, the question arose as to whether
all mathematical truths could be deduced purely from simple, self-evident logical principles.
This was Frege’s aim when he first set out the predicate calculus in his Begriffsschrift [Fre67]
in 1879, and later attempted to develop arithmetic from purely logical principles. Russell
found an inconsistency in Frege’s axiomatization of arithmetic. Whitehead and Russell stuck
to the logicist line and attempted to develop a purely logical theory of mathematics in the
Principia Mathematica [WR25). They developed a somewhat baroque theory of types and
showed that a significant amount of mathematics could be rigorously derived from their
axioms. It would be difficult to argue that the system of Principia Mathematica employed
only logical principles. There have been attempts to revive logicism but none that are very
convincing,.

Intuitionism. In the late nineteenth and early twentieth century, Kronecker, then
Poincaré, and eventually Brouwer, became heavily skeptical about the purity of the methods
of proof employed in large parts of mathematics. The crux of the attack was with the use
of infinite entities such as the set of natural numbers. Mathematics is replete with proofs
where the existence of a mathematical object satisfying a property is demonstrated by show-
ing that its non-existence yields a contradiction.® This, the critics argued, is fine when the
domain is finite since all possible candidates can be examined in order to find one satisfying
the required property. No such exhaustive search is possible with infinite domains and hence
the argument by contradiction does not yield a constructive demonstration of existence.
Brouwer’s critique led him to formulate intuitionism as a pure approach to mathemat-
ics that only used constructive methods and treated infinite structures as potential rather

6The classic example is a proof that there exist irrational numbers z and y such that z¥ is rational. The
argument is that either V2 % is rational, in which case = and y can both be taken as V2, or we pick z to be
9
\/iﬁ and y to be v/2 so that z¥ is just V2" which simplifies to 2.
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than completed infinities. The intuitionistic approach to mathematics has been studied and
further developed by a number of mathematicians including Kolmogorov, Heyting, Bishop,
Markov, Shanin, and many others [TvD88|. The use of constructive proof techniques has
also had a significant influence on computer science, particularly through proof checking
tools such as Nuprl [Con86]. Intuitionism does place serious and pervasive limitations on the
methods of mathematics and has not yet had much of an impact on mathematical practice.

Formalism. Hilbert reacted to the intuitionistic critique by initiating a research pro-
gramme to demonstrate that conventional mathematical methods were in fact valid. He
wished to prove this using rigorous proof methods of mathematics that were acceptable be-
yond any shadow of doubt. His claim was that the use of infinities in mathematics was a
convenient idealization and that any concrete conclusions about numbers that were drawn
from such idealizations could be shown to be correct. Hilbert hoped that such a metamathe-
matical study would show that mathematics was free of contradiction and hence consistent.
In developing his metamathematics, he identified mathematics with a formal game played on
paper with symbols and syntactic rules for forming statements and proofs. Hilbert also posed
several other important problems in metamathematics including the question of whether a
machine could correctly identify whether a given formal statement was a theorem in a given
formal theory of mathematics.

Metamathematics has had a great many successes but Hilbert’s original goal was not ful-
filled. His own technique of formalizing and arithmetizing the syntax of mathematics led to
Godel’s discovery that any reasonable formal theory contained sentences that could not be
proved or disproved. As a consequence of this, Gédel showed that any consistency proof of a
sufficiently powerful formal theory for mathematics would have to rely on methods that were
stronger and more open to doubt than those permitted by the theory. Church [Chu36] and
Turing [Tur65] showed that no machine could recognize the theorems in the predicate calcu-
lus. Since most formal mathematical theories build on the predicate calculus, the prospect
of mechanical decision procedures for these theories is not great. There are interesting de-
cidable theories such as Presburger arithmetic which is a form of Peano arithmetic where
only addition is defined but not multiplication.

1.1.3 Language and Metalanguage

The quest for a foundation for mathematics begins with the search for a precise and unam-
biguous notation for expressing mathematics. Modern mathematical notation owes a good
part of its precision and polish to the work of logicians such as Frege and Peano. A mathe-
matical language provides a syntax for expressing statements about a particular conceptual
domain. A semantics for a language characterizes those statements that are true of the
conceptual domain. The language of informal mathematics consists of ad hoc notation and
everyday language embellished with colloquial mathematical usages. The notation of logic
underlies the formalized syntax of mathematics. For example, the axiom of extensionality in
set theory would be written informally as, “Two sets are equal if they contain exactly the
same elements.” In formal notation, the same statement would be

(Vo,y. (V2. 2€x < 2z€y)Dr=y).
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Such a language can be given a precise grammar so that it is possible to automatically check
an expression for syntactic well-formedness. We can characterize expressions according to
their syntactic properties as formulas, atomic formulas, quantified formulas, sentences, and so
on. It is possible then to study the connection between the syntactic and semantic properties
of expressions. The language in which the syntax and semantics of a formalized language is
discussed is called the metalanguage. The formal language itself is called the object language.
Informal mathematical discourse often employs metalinguistic assertions such as, “There are
exactly two free variables, ‘2’ and ‘y’, in the statement of extensionality above.” Thus the
metalanguage used in mathematical discourse is informal natural language such as English
or German.

The work described in the present monograph employs a formal object language, namely
that of first-order logic. In contrast to most logic textbooks where the metalanguage is
informal, we employ a formal metalanguage that is based on the programming language
pure Lisp (see Section 1.1.8).

1.1.4 Logic

Given a language for expressing statements about a particular conceptual domain, and a
semantics for identifying the true statements, a logic is a system of azioms and rules of
inference for constructing proofs of statements. Examples of logics include classical and
intuitionistic propositional logics, temporal and modal logics, and first-order logic. A theory
such as number theory or set theory can be formalized within the framework of a logic such
as first-order logic by providing additional axioms. A statement is provable in a logic if it has
a proof constructed from the axioms using the rules of inference. The provable statements
are the theorems of the logic. A statement is disprovable if its negation is provable. A logic is
sound if all provable statements are semantically true. It is complete if all of the semantically
true statements are provable. The logic is consistent if no statement and its negation are
both provable. A logic is decidable if there is an effective algorithm to determine whether a
given statement is a theorem.

Propositional logic, for example, is about propositions, which as the dictionary indicates
are expressions “in language or signs of something that can be believed, doubted, or denied
or is either true or false.” There are many ways that propositional logic can be presented;
the presentation below follows Shoenfield [Sho67]. Formulas in the language consist of:

o the propositional atoms such as p,q, and r,
o negations: (—A) (read as “not A”), where A is a formula, and
e disjunctions: (AV B) (read as “A or B”), where A and B are themselves formulas.

Except for the quantified formulas to be introduced below, the surrounding parentheses
will be dropped when they contribute nothing to the readability of the formula. Note that
negation binds the tightest, and that conjunction and disjunction bind more tightly than
implication and equivalence. The other propositional connectives can easily be defined in
terms of negation and disjunction:

o Implication: A D B =-AV B (read as “A implies B”).
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A -A A | B [ AVB
true | false true | true | true
false | true true | false | true

false | true | true
false | false | false

Figure 1.1: Truth Tables for Negation and Disjunction

m Azxiom
m Weakening
AV A
T Contraction
AV(BVC) o
m Associativity
AVvB -AvVC
BvCc ™

Figure 1.2: Proof Rules for Propositional Logic

e Conjunction: AA B = -(—-AV —B) (read as “A and B”).

o Fquivalence: (A < B) = (A D> B)A (B D A) (read as “A equivales B” or “A if and
only if B”).

The classical semantics for propositional formulas is given by assigning truth values, true
or false, to the propositional atoms and evaluating the statements for each such assignment
using the truth-table interpretation of negation and disjunction. These truth tables are dis-
played in Figure 1.1. The statements of propositional logic are just its formulas. The true
statements are those that evaluate to true under any assignment of truth values to the
propositional atoms. A typical proof rule of the propositional logic, the law of the excluded
middle, asserts that any formula of the form AV —A is an axiom. Such a proof rule is an
axiom scheme since it asserts AV —A to be an axiom for any formula A. Any formula of the
form AV —A always evaluates to true regardless of whether A is assigned true or false.

The excluded middle axiom and the other proof rules of propositional logic are shown in
Figure 1.2. For example, the proof rule of weakening would yield a proof of (A V B) from a
proof of B. Propositional logic can easily be shown to be sound relative to the truth-table
interpretation, and also to be consistent and complete.”

Furthermore, propositional logic is decidable: there is a straightforward algorithm to decide
if a given statement is a theorem by simply checking if every truth-table evaluation of the
statement is true. The consistency, completeness, and decidability of propositional logic

"Soundness typically implies consistency. A sound theory is consistent if the semantics does not judge some
statement and its negation to both be true. A theory could be consistent in not proving some statement and
its negation but could be unsound relative to the intended semantics.
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constitute the earliest significant contributions to metamathematics and were first proved
in Post’s doctoral dissertation [Pos21], and independently by Bernays [Ber26).

First-order logic or the predicate calculus is a refinement of propositional logic where the
truth values of propositional atoms are allowed to vary depending on the values assigned
to the individual variables. The syntax of first-order logic contains individual variables,
function symbols (e.g., the addition and multiplication operations of arithmetic), predicate
symbols (e.g., the symbols for the ordering relations < and < on numbers), and quantifiers.
First-order terms are either

¢ individual variables denoted by x,y, and z, or
o of the form f(t;,...,t,), where f is an n-ary function symbol and the t; are terms.

An atomic formula has the form p(ti,...,t,), where p is an n-ary predicate symbol and
the t; are terms. The arities of predicates and function symbols can be zero. The formulas
include

e atomic formulas,
e the negation —A of any formula A,
e the disjunction AV B of any two formulas A and B, and

e the existential quantification (3x. A) (read as “for some z, A”) of any formula A with
respect to a variable x.

The form (Vz. A) (read as “forall x, A) can be defined as ~(3z. —A). Unlike propositional
logic, where the meaning of an atomic proposition in a given interpretation is either true or
false, the meaning of p(t1,...,t,) varies according to the meanings of the t;. A first-order
language is a collection of function and predicate symbols obeying the above syntactic rules.

Any expression (term or formula) is a subexpression of itself; the subexpressions of
ft1,...,t,) and p(tq,...,ts) also include the subexpressions of the #;, the subexpressions
of =A and (3z. A) include those of A, and the subexpressions of A V B include those of 4
and B. A formula A is a subformula of a another formula B if A is a subexpression of B. A
variable z is said to occur in a term or formula in which it occurs as a subexpression. Any
occurrence of z in A is bound in (Jz. A). An occurrence of a variable is free in a formula if it
is not bound in any subformula of the given formula. Any variable that has a free occurrence
in a formula is a free variable of the formula. A statement or a sentence is a formula with
no free variables.® The notations [r/z]t and [r/z]A refer to the results of substituting the
term 7 for all free occurrences of the variable x in the term ¢ and the formula A, respectively.
First-order logic with equality contains a special 2-ary predicate symbol for equality that is
used in the infix form a = b, where a and b are terms.

A model for a first-order language assigns meanings to the function and predicate symbols
relative to a nonempty domain D. A model M associates each n-ary function symbol in the
language to a mapping from D" to D, and each n-ary predicate symbol in the language to

8 Any formula can be seen as a statement where the free variables in the formula are implicitly universally
quantified at the outermost level. So if A is a formula in a proof and x is the only free variable in A, then the
statement A is read implicitly as (Vz. A).
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Mlz]p = p(z)
M[f(tr, .. ta)lp = MY Mtdp, - .., M[ta]p)

_ | true, if M[a]p= M][b]p
Mla="bp = { false, otherwise
Mlp(ts, ... ta)]p = M@)Ml[t]p,. .., Mta]p)
_ | false, if M[A]p = true
Ml-A]p = { true, otherwise
true, if M[A]p = true
M[AV B]p = [ true, if M[B]p = true
false, otherwise

true, if M[A][d/z]p = true, for some d in D
false, otherwise

MiGz Al - {

Figure 1.3: Semantics of First-Order Logic

Substitution

[a/z]A D (Fz. A)

Identity
a=a

=015 (D (an = by D J(@1,- -y 0n) = Fr, - b))

a1 =b D(..D(a,=0bnDplar,...,an) Dp(bl,...,bn)))Equa“w2

ADB
x is not free in B ; 3-Introduction
(3z. A) D B

Figure 1.4: (Non-Propositional) Proof Rules for First-Order Logic

a mapping from D™ to the truth values {true, false}. A model by itself is not enough to
determine the meanings of expressions since we also need to fix the interpretation of any free
variables in the expression. An assignment p assigns values in D to the individual variables
of the language. A formula A is true in a model if it is true with respect to any assignment p
of values in D to the free variables in A. If p is an assignment, then [d/z]p is the assignment
that assigns d to  and p(y) to any other variable y. The meaning of a formula in a model
M under an assignment p is shown in Figure 1.3. The formula (3z. A) is true in the model
under assignment p if the formula A is true in the model under the assignment [d/z]p, for
some value d in D. The truth value of a formula with free variables depends on the choice
of the assignment, but a statement can only be either true or false in a model. A statement
is semantically true if it is true in all models.

In addition to the proof rules of propositional logic (in Figure 1.2), first-order logic contains
rules pertaining to equality and quantification. These rules are shown in Figure 1.4. It is



